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AMtract--A new theoretical model has been developed to explain the behavior of transverse particle 
transport in turbulent flow of a dilute two-phase suspension due to turbulent diffusion. This model is based 
on the ability of a particle to respond to surrounding fluid motion and depends on particle size and density 
relative to the carrier fluid, the fractional variation in particle concentration in the transverse direction 
as well as the existing turbulence structure of the surrounding fluid. The model developed in this 
investigation has been formulated by dividing the transverse fluid velocity, as seen by a particular particle, 
into two superimposed components representing, respectively, the transverse turbulent fluid fluctuations 
and an apparent transverse local fluid drifting velocity due to the effect on the transverse oscillatory 
component of fluid motion by the transverse concentration distribution of particles. A subsequent paper 
will show that the theory (together with other new results on the concentration effects on particle drag 
and rift and fluid turbulence properties) can help to explain the phenomena measured previously. 

I N T R O D U C T I O N  

A comprehensive understanding of  transverse particle motion in a turbulent dilute two-phase 
suspension flow due to turbulent diffusion is of  fundamental importance. A model that successfully 
analyzes the physics behind particle transport can easily lend itself to explaining many problems 
currently being researched in this field. Particle deposition rates, for one, cannot be accurately 
solved without a basic understanding of  this important flow mechanism which contributes to 
transporting the particles towards the wall from the flow. This investigation, therefore, addresses 
and attempts to describe the mechanism behind such a two-phase turbulent flow. 

Most conventional theoretical treatments of  particle transport flow fields assume that two 
distinct flow regimes exist: the viscous sublayer and the turbulent diffusion core region, established 
from knowledge obtained from single-phase flows (e.g. L i n e t  al. 1953; Friedlander & Johnstone 
1951; Davies 1966; Beal 1968; Hutchinson et al. 1971). In the fully developed turbulent core region, 
particles are assumed to be laterally transported by turbulent diffusion in the same way as scalar 
quantities are assumed to be transported in a turbulent stream. Particles reaching the edge of  the 
viscous sublayer as a result of  this transport are assumed to coast towards the wall across the 
sublayer to form deposition. Unfortunately, these conventional treatments all contain an adjustable 
constant which is not universal for all flow systems. For  instance, Wildi (1982) compared the 
prediction from one such treatment with the result of  wall-deposition measurement of  a mist flow 
of  droplets over a size range. With the empirical constant adjusted to produce reasonable prediction 
for the larger droplets, the treatment generates an awkward underprediction of  4 orders of  
magnitude for the smaller droplets. This apparent drawback points to the question of  the 
correctness of  the very physics assumed in these theoretical treatments. 

Rouhiainen & Stachiewicz (1970) pointed out that the particles' response to turbulent fluid 
motion is important for particle wall deposition. Their examination leads to the realization that 
the particle turbulent difl'usivity, %, equals the fluid turbulent diffusivity, ~f, only for very small 
particles. The theoretical treatment by them, first developed by Hjelmfelt & Mockros (1966), is 
based on the concept of  particle frequency response in an oscillating flow field. An important 
consequence of  this approach is that the validity of  the turbulent diffusion assumption for particle 
transport in a turbulent fluid stream can be characterized by the value of  an amplitude ratio, r/, 
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which is defined as the ratio of the amplitude of particle oscillation to that of the surrounding eddy 
motion. The main weakness of Rouhiainen & Stachiewicz's (1970) analysis lies in its lack of 
suggestion of a rational scheme to link the two distinctly different flow regions, the turbulent 
diffusion core and the laminar or quasi-laminar viscous layer. 

Lee & Durst (1979, 1980, 1982) have suggested a new general theoretical approach to transverse 
particle transport in turbulent flow. Their approach is based on particles' dynamic response 
characteristics to the surrounding eddy motion. Their analysis divides the flow field into two 
transverse regions: the turbulent diffusion controlled core region where particle motion is controlled 
by turbulent fluid oscillations, so that Ep = Ef; and the mean fluid motion controlled quasi-laminar 
region where particle motion is controlled by mean fluid motion so that % = 0. The boundary 
between these two regions is determined by the cutoff radius re, which according to the analysis 
is a function of particle size, flow properties and physical system properties. The cutoff radius was 
defined as the radial distance from the pipe centerline to the point where the amplitude ratio, r/, 
as devised by Rouhiainen & Stachiewicz (1970), equals one-half. Some of their theoretical 
conclusions were qualitatively verified by local velocity measurements performed by laser-Doppler 
anemometry in particulate two-phase flows. 

The drawback of Lee & Durst's (1979, 1980, 1982) approach, however, arises because an artificial 
boundary was placed between the two flow regions; i.e. it is not possible to have a smooth transition 
of flow properties in the transverse direction. Most seiously this model treats the two regions 
separated by this artificial boundary as separate unrelated identities. Consequently, the analysis 
contains two unconnected sets of  governing equations having no physical or mathematical ties with 
each other. In addition, the particle turbulent eddy diffusivity, %, which controls the transverse 
particle transport in the turbulent core, has been assumed to be constant and equal to the turbulent 
eddy diffusivity of the surrounding fluid, Er. 

The model now being proposed is directed towards an extension of Lee & Durst's (1979, 1980, 
1982) model. One single set of governing equations then should dictate the particles' response to 
the turbulent fluid motion. As intuitively expected, a smooth transition in flow properties should 
occur in traversing the pipe. Strict notation of the flow region is no longer necessary since the flow 
field is governed by one set of  equations. In particular, the turbulent diffusion of particles should 
be effective in varying degrees across the whole pipe. Therefore, it is necessary to come up with 
a model to relate the local particle turbulent eddy diffusivity, %, to the local fluid-flow turbulence 
structure. 

The analysis begins with a discussion of the governing equation of motion of a spherical particle 
in a moving turbulent flow. Basset (1888) originally derived these equations for the slow motion 
of a particle in a stationary fluid. Tchen (1947) modified them for application to a moving turbulent 
flow. This is followed by a development of the proposed model. The analysis is then broken down 
into two sections corresponding to the two components of fluid velocity, that when superimposed 
onto one another comprise the fluid velocity in the transverse direction as seen by a particular 
particle. As the analysis points out, two governing equations for particle motion involving each 
of the two fluid velocities separately, can be extracted from Tchen's (1947) single governing 
equation. These two equations, their solutions, associated simplifications and physical represent- 
ations are discussed and analyzed. It is this set of differential equations that describe the basic 
physics with which the particle frequency response can be explained. 

THEORETICAL MODEL 

The governing equation of motion of a spherical particle in a turbulent fluid flow, first 
formulated by Tchen (1947) and reviewed by Hinze (1959) and subsequently rederived from first 
principles by Maxey & Riley (1983), can be written as follows: 

n ,3 dVp n 3 dVf 
-~ ap pp - - ~  = 3n/zfdp (Vf - -  Vp ) -Ji- -~ dp Pf -~-" 

(dVf dVp) 

+~gdppr~'~-lrc 3 /dVr dVp'~.~. ]+23d2P(rcPf"f)½tilkd~/-td; ½'f-tit'' [1] 
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where dp is the particle diameter, pp and Pr are the intrinsic particle and fluid densities, Vp and Vf 
are the particle and fluid velocities, and pf is the molecular viscosity of the fluid. 

The sum of the terms on the r.h.s, of this equation is equal to the force required to accelerate 
a particular particle in the flow field, the first term on the r.h.s, is the viscous force in the form 
of Stokes' drag; the second term is the force generated by the pressure gradient in the fluid 
surrounding the particle due to fluid acceleration; the third term is the force needed to accelerate 
the essential "added" mass of the particle; the final term, known as the Basset history term, 
accounts for steady-state flow deviations. 

Hjelmfelt & Mockros (1966) point out that there are four requirements related to conventional 
studies incorporating [1]. Except for one modification, they all apply to this investigation. First, 
the turbulence must be locally homogeneous and stationary. Second, the particle diameter, alp, must 
be substantially less than the length scale of the energy-containing eddies. This requirement pertains 
only to particles within the particle transport region of the turbulent diffusion controlled range for 
the present model. Third, a small Reynolds number based on the relative velocity of the fluid and 
particle must exist. Lastly, particle concentrations are considered dilute enough such that the 
presence of the particles does not interfere with the overall known fluid motion. 

In addition, [1] is subject to the following restrictions, as pointed out by Corrsin & Lumley (1956) 
and discussed by Hinze (1959): 

d~ d Vf Vf 
vS g3-"x -<< 1, d2/~2Vf~ >> 1, [2] 

"\ ax ) 
where vt is the intrinsic kinematic fluid viscosity. These restrictions are a direct result of the 
Navier-Stokes equation for a single component of velocity: 

OP "- Pf[ ff-~t (Vf)i'dt" (Vf)k ~--~k (Vf)i ] -- 02(Vf) '  / / f ~ "  [31 c3x, 

It should be noted that the local pressure gradient surrounding a particle is due to viscous effects 
as well as fluid accelerations. Tchen's (1947) analysis only considers fluid accelerations. Hinze 
(1959) points out that because the particle diameter is much smaller than the associated turbulent 
length scale, and the time intervals are shorter than associated deformation times, the fluid velocity 
may be considered uniform and the viscous effects associated with the pressure gradient considered 
negligible. The restrictions placed on [1] are therefore met. Written for the transverse direction, 
[1] becomes 

(dvr dvp'~ 

dvp bdVf i "rkdt' d t ' ]  
+avp=aVf+  -~-+c.]o  ( t - t ' )½  dt',  [4] 

where 

Vp, vf--particle and fluid velocity components in the transverse 
direction, respectively, 

36/~f 
a = (2pp + pf)d2p ' [5a] 

b = 3pf 
(2pp + pf) [5b] 

18 fp f . f~½ 
c = (2pp + pf)dp \ - -n-J  " [5c1 

Actual particle transport flows contain particles and eddies of various sizes. For simplicity, 
[1] considers only spherical particles of one specific diameter, a~. It is to be pointed out that the 
model presently being developed can be readily extended to incorporate a dispersion of particles 
of multiple sizes. A solid particle-gaseous fluid mixture has been chosen for this model so that the 
density ratio of particle/fluid considered is relatively large. Hinze (1959) points out that when this 
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density ratio is large the second, third and fourth terms of [1] are of only slight consequence. The 
present analysis will therefore neglect the Basset history term cited as a type I approximation by 
Hjelmfelt & Mockros (1966), and therefore c --0 in [4]. 

A type II approximation, according to Hjelmfelt & Mockros (1966), neglects the "added" mass 
and the Basset history terms, and a type III approximation neglects the pressure gradient, "added" 
mass and Basset history terms. 

This analysis proposes that the local velocity of an incremental fluid volume as seen by a particle 
in a turbulent two-phase dispersion flow can be expressed as a summation of two velocities, the 
turbulent fluctuating velocity and a drifting or turbulent diffusion velocity due to the interaction 
between the turbulent fluctuating velocity and the transverse particle fractional concentration 
gradient. 

Tchen (1947) was the first to suggest that turbulent fluid fluctuations may be expressed as Fourier 
integrals of the following form: 

v), = (~ cos cot + 2 sin o~t) do~, [61 
0 

where ~ and 2 are complex Fourier integral amplitudes that can be defined as 
° 

~ ( ~ )  = ~ ~rs(t)(cos ogt) dt  

and 

2(m) = _2 ~r,(t) (sin o~t) dt; [71 
n 

~o is the frequency, equal to 2nn. Stated differently, fluid fluctuations may be physically represented 
as having sinusoidal components. 

Particles being transported in a turbulent flow, in general, will not be evenly distributed in the 
transverse direction and thus a local transverse particle concentration gradient usually exists. The 
fluctuating motion of the fluid will then be affected by this uneven distribution of particles. The 
fluid will find it more difficult to pass through in the direction of increasing particle concentration 
than in the direction of decreasing particle concentration. A larger drag will have to be overcome 
in the direction of increasing particle concentration. As a result of this uneven force distribution, 
the fluid oscillations will have uneven amplitudes, as shown in figure 1. This locally unbalanced 
sinusoidal motion leads to an apparent fluid drifting velocity away from the high particle 
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Figure 1. Uneven fluid eddy flow oscillation about a particle due to particle concentration variation. 
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Figure 2. Schematic representation of the k cos 2 cot component of apparent local fluid motion super- 
imposed onto the cos oJt component of fluctuating fluid motion. 

concentration region. From a local point of view, on top of sinusoidal motion the fluid appears 
to be drifting in the direction of decreasing particle concentration. 

This unbalanced sinusoidal motion can be obtained by perturbing the already established fluid 
velocity in such a way as to slowly shift the entire oscillating motion in one direction. The desired 
drifting effect is achieved by considering a trial generating function for the fluid velocity as follows: 

fo ~ -- [~ cos cot(1 + k cos cot) + ~ sin cot(1 + k sin cot)] dco. [81 

A graphic description of the [cos cot(l + k cos cot)] component of this proposed fluid velocity is 
shown in figure 2. A qualitatively similar description of the [sin cot(1 + k sin cot)] component of this 
proposed fluid velocity can also be shown. Rearranging the above expression, we have 

~ =  ~r,+ ~., [9] 

where 

~ =  f0 ~ (~ cos cot + ~ sin cot) dco 

and 

f/ tYra = [k(~ cos 2 cot + ~ sin 2 cot)] dco. [101 

This trial apparent transverse fluid velocity function, ~ ,  is therefore comprised of two parts: a 
sinusoidal fluid motion expressed as a Fourier integral, tYf,; and an additional fluid motion due to 
the interaction between turbulent fluctuations and transverse fractional variations of particle 
concentration, ~fd- 

Equation [9] points out that from a local point of view, the turbulent fluid motion can be divided 
into two components. The two terms sin 2 cot and cos 2 cot are always positive and have magnitudes 
~< 1; therefore, as long as k is a small quantity, the apparent fluid velocity, tT~, will start to shift 
in a direction according to the sign of k, as well as continue to oscillate. The physical reasoning 
behind this apparent drifting lends itself to say that the quantity k should be proportional to the 
local gradient of fractional particle concentration. In this light it will be assumed that 

I 0~ 
k • k ' - - -  Ill] ~ay '  

M F 13/[--(} 
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where k '  is a proportionality constant, to IX determined, and ~t is the time-mean particle volumetric 
concentration. 

Fluctuating quantities in turbulence are often separated into two components: a time-mean 
quantity; and a time-dependent quantity, which fluctuates around the mean quantity. Following 
this convention, we establish the following expression for the apparent fluid velocity corresponding 
to the unbalanced fluctuating motion: 

where 

vr = ff~ + ~fa, [121 

~fd = sin 2 cot) dt do) [13] 

is the apparent fluid drifting velocity based on [10] and t~f~ is the time-dependent sinusoidal fluid 
oscillatory velocity of [10]. 

It will IX assumed that particle velocity counterparts exist in response to the two fluid velocities 
described above. Using the same notation, 

vp = ~,  + ~ .  [14] 

It will also IX assumed that each of the two particle velocities individually respond to each of 
the two fluid velocities. In other words, this investigation assumes that the sinusoidal particle 
velocity, tTr,, responds only to the sinusoidal fluid velocity, tTf~. Likewise, the particle drifting 
velocity, ~ ,  is assumed to respond to the apparent fluid drifting velocity, Pro- The two fluid 
velocities are separately treated as the drivers of two different fluid-particle velocity pairs. 

Substituting [12] and [14] in [4], we have the two governing equations, respectively, for the two 
particle transverse velocity components ~pa and ~r, as follows: 

d~vd = d~rd + c  ~ t \ d t ,  ~ , ] . ,  
dt + a ~ p d = a v f d + b - - ~  2o (t--t'-~ at [15] 

and 

d ~  at~p=afr~+bdfr~ f ' \ d t '  - d - T / . ,  
dt --~ + c J0 (t - i"~ (:It. [16] 

ANALYSES 

Determination of particle fluctuating velocity due to fluid oscillations in the transverse direction, ~ 
The first type of fluid-particle motion to be discussed is the fluctuating velocity pair, ~f, and tT~. 

Hinze (1959) has contributed a great deal to the development of this particular particle frequency 
response. Hinze's equation of motion in terms of ~ and zTfs is identical to [16]: 

dtT~ b d~fs fo \dt '  dt ']dt ' .  [16'] 
d--t- + a6r~ = at~fs + dt + c . -  (t - t')½ 

Keeping in mind that the fluctuating fluid velocity, ~fs, is assumed to be of the form 

gf~ = (~ cos cot + 2 sin cot) do), [17a] 
0 

Hinze postulated that the resulting particle velocity is of the form 

g~-- ~[~ cos(o)t + f l ) + 2  sin(rot + fl)] do). [17b] 
0 



PARTICLE TRANSPORT IN TURBULENT TWO-PHASE FLOW--I 105 

This can be physically interpreted as saying a particle responding to fluid oscillations will in general 
be out of phase by the amount 3, and have its amplitude modified by the factor ~/. In solving this 
differential equation Hjelmfeit & Mockros (1966) have obtained the following expression for the 
amplitude ratio r/: 

r/ = [(1 +fj)2 +f~]½; [18] 

and for the phase angle, 

where 

and 

tan-I( [19] 
~--  \1 +f~J  

co c o + c  ( b - l )  
f~ ffi [20a] 

co a + c  b -  1) 

A :  
[a  + c(_~)½~ + [ ~ + c(_~)½12. [20b] 

The amplitude ratio, ~, and phase angle,/1, are now seen to be functions of the fluid oscillation 
frequency, w, and the intrinsic properties of both the fluid and the particle. 

The amplitude ratio, r/, has been shown by Hinze (1959) to be related to both the particle and 
eddy turbulent diffusivities, Ep and ~f, respectively, by 

~p _ f o  ~ 
2Ef(n  ) dn 

, [21] 

~f fo Zf(.) dn 

where Er(n) is the Lagranglan energy spectrum as a function of n, where n -- co/2n, the frequency. 
Therefore, in order to relate the fluid turbulent diffusivity, ~f, to the particle turbulent diffusivity, 

%, the Lagrangian description of the energy spectrum in the sense of following the fluid element 
must be employed. Experimental data, however, is almost exclusively collected using a Eulerian 
or control volume approach. Lee & Durst (1982) point out that because in most cases of practical 
flows of interest, such as flow through a straight pipe, the fluid velocity in the transverse direction 
is negligible on a gross scale, the Eulerian description may usually be used to approximate the 
Lagrangian description for transverse fluid motion. 

When r /=  1 in [21], the particle turbulent diffusion equals the fluid turbulent diffusion, and the 
particle's motion is completely controlled by fluid oscillations. When ~ = 0, particle turbulent 
diffusivity equals zero, and the particle's motion is completely governed by the mean fluid 
quasi-laminar (or laminar) viscous interaction of the mean motion in the surrounding flow field. 
A typical curve of the amplitude ratio, ~, as a function of oscillating fluid frequency, constructed 
from [18] is shown in figure 3. Just as the time-mean average of the turbulent fluid oscillations can 
be shown to equal zero, the time-mean average of the oscillating particle velocity can be shown 
to equal zero. 

It can be shown that the particle turbulent velocity in the transverse direction can be obtained 
as follows: 

= , .  [25] 

where ~/. is the amplitude ratio corresponding to ca,; from [8] and [20], 

t/o = t/(to.) = {[1 +A (to.)] 2 + ~(co.)]2} ½ [231 



i06 S, L. LEE mad M. A, WlESLER 

K" 

o- 

"o 

E 

Frequency, (a 

Figure 3. Particle frequency response. 

g 

L- 

ID 

m 

E 
0 

E 

10 

01 

001 

o OOl  I 
r r 0001 0.01 

o 

1 I 
I I 
I I 

, h xI 
01 I 10 

n e 

Figure 4. Typical spectral distribution o f  Er(n). 

and co,, the frequency associated with the average turbulent kinetic energy of the fluid across the 
spectrum, can be provided from a typical energy spectrum curve as shown in figure 4. 

Determination o f  particle drifting or diffusion velocity in the transverse direction, ~pd 

We have from [13], after some manipulation, the apparent drifting velocity of the fluid due to 
the effect on the oscillatory component of fluid motion by the concentration distribution of 
particles: 

t~f. = ~ (4 + 2) de). [24] 

For the trivial case of simple diffusion, 

d~fd=O and d ~ = O ,  
dt dt 

we have from [15], [24] and [11]: 

k '  1 O~ 1"~ 

30 ~ = ~r. 2 e Oy (~ + '~) doJ. [251 

Lee & Durst (1980) have proposed that the turbulent diffusion equation for particles in a 
suspension may be written as 

"~pa = - % ~ Oy" [26] 

Comparing [25] and [26] produces an expression for the constant of proportionality, k': 

k '  = - 2% [27] 

; ( ¢  + 2) dco 

Substituting this expression for k '  into [11] yields 

- 2% 10a [28] 
k = r ~  ~ 0 y  

J (~ + 2) do9 
0 

It is desirable to express k, and hence ~ra in quantities that can be obtained experimentally. Hinze 
(1959) demonstrated that 

fo e Er(n) dn = ~1 f f  (¢2 + ;'2) d~, = ( ~ , , ) ~ , ~  [29] 
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Table l. Laufer's(1953)experi- Table 2. Laufer's (1953) experimental 
mental data of (~fs) 2 as a func- data of t* and ~f, as a function of r/r o 

t ion  o f  r/r  o r/r  o t* X |0--4($) Lcf(t~[n2/$2) 

r/ro (~f,)z x 104 (cm'/s 2) 0.926 1.45 4.28 
0.926 2.94 0.309 3.06 4.71 
0.309 1.54 0.000 3.55 4.79 
0.000 1.35 

where T is the time period, T = 2~/co. The quantity, (~f,)2, which is nothing more than the square 
of  the r.m.s, value of  ~r,, is often measured experimentally and is commonly found in the literature 
as a log-log plot of  the Eulerian energy spectrum as a function of  frequency, n = co/2~ (see figure 4). 
From example, values of  (~f,)2 have been extracted from experimental data Laufer (1953) has 
collected, mostly through hot-wire anemometry, in fully developed turbulent pipe flow having a 
Reynolds number of  500,000 and an axial velocity of  30.5 m/s (100 ft/s), and are summarized in 
table 1. The quantity r0 is the inner radius of  the pipe Laufer used. 

Hinze (1959) states that for short diffusion times ~f and ~p can be evaluated as 

t* f :  Ef(n)dn = (~,)2 t *  £f= 

and 

= t* ~: ?]2Sf(?'/) d n =  (~ps) 2 t*. [30] ~p 

It will be assumed that the characteristic diffusion time, t*, used to evaluate the fluid and particle 
diffusivities in the above equations, is the time associated with one period of  oscillation for the 
frequency, co e, associated with the average energy across the spectrum so that t * =  2~/coe. 
Therefore, once a definition for coe has been established, since (tYr,) = has already been experimentally 
determined, an expression for Ef that can be obtained solely from experimental results, will be 
possible. The frequency, toe, associated with average energy across the spectrum can be determined 
from the information experimentally provided in a typical energy spectrum curve, as shown in 
figure 4. The area under such a curve has already been shown to equal (t~f,) 2. A horizontal constant 
energy spectral line can be determined such that the rectangular area under this curve equals (~t,) 2. 
The frequency, no, at the point where the two spectral lines intersect corresponds to the average 
energy across the spectrum and equals coc/2~ or simply (t*)-J. Values of  the characteristic diffusion 
time, t*, and hence the fluid turbulent diffusivity, el, were determined from the experimental results 
provided by Laufer (1953), and summarized in table 2. 

An expression for particle turbulent diffusivity, ~p, as established in [30] may be evaluated 
experimentally as well. The amplitude ratio, t/, is taken to be the amplitude ratio r/, corresponding 
to co~ as defined by [23]. Since r h has just been defined using the frequency, co,, associated with the 
average energy across the spectrum, it may be treated as an experimentally known constant in [30]. 
Thus the particle diffusivity can he written as 

= ,l~t* f :  E~(n) dn ffi ,l~Ef, £p [31] 

where the amplitude ratio, r/e, diffusion time, t*, and integrated energy spectrum can all be 
determined experimentally. 

Looking at the time-mean calculations previously undertaken gives rise to a physical description 
of  the quantity 

f0 + A) (~ dco 

found in [28]. From the definition of  ~r,, [10], we have 

It~f,I = I(~ cos cot + ~ sin cot)ldco [321 
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and 

I~r,I = f ' u ~  ® I(~ c°s ¢°t + 2 sin (°t)l d¢o dt. [33] 

When the amplitude functions ~ and 2 are of  the same order of  magnitude, we have: 

1 (¢ + ,z) d¢o. I t~f,I n [34] 

A closer took at figure 4 reveals how the denominator in [28], 

o~(~ + ).) do~ 

which now equals n Ifff, I, may be determined experimentally. The area under the E l ( n )  c u r v e  for 
a particular unit width of  frequency can be defined as (~f,)2. The summation of  these terms across 
all frequencies yields (t~f,) 2. Therefore, if the square root of  the data plotted in figure 4 is replotted, 
as in figure 5, the area under the new curve for a particular unit width of  frequency can be defined 
as I~Yf, I. (Note that only positive values of  the square root were taken.) Thus, the summation of  
these new terms across all frequencies yields I t~f,I. This calculation has been performed on Laufer's 
(1953) data, where the results have been summarized in table 3. 

It should now be apparent that a value of  k can be obtained experimentally. From [28], [30] and 
[34], we have 

1 a= - 4  [35] 

(~ + 2) d¢o 
J 0 

Table 3. Laufer's (1953) experi- 
mental data of ]Oal as a func- 

tion of r/ro 
m 

r/ro I~f,I x 10: (era/s) 

0.926 6.8 
0.309 3.4 
0.000 2.6 
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Thus the result for the particle drifting or diffusion velocity, ~ ,  can be written from [24] as 

= = ~p¢l ~fd --2~2(fit) ;'~y" [36] 
OJe 

SUMMARY AND CONCLUSIONS 

This theoretical investigation has developed a model to explain transverse particle transport in 
turbulent flow due to turbulent diffusion. The model is based on the particles' ability, or inability, 
to respond to surrounding local fluid motion. Transverse particle motion has been divided up into 
two components, each separately driven by a particular type of fluid motion. 

The first fluid-particle velocity pair investigated were Fourier integral representations of fluid 
and particle fluctuating velocities. It was shown that the particles' response in general lagged the 
driving fluctuating fluid velocity by a phase angle//, and had an amplitude modification of r/. This 
type of fluid-particle response dominates regions where the fluid fluctuations have relatively large 
amplitudes, as compared to particle size. 

The second fluid-particle velocity pair examined were local drifting velocities due to the effect 
on the oscillatory component of fluid motion by the concentration distribution of particles in the 
transverse direction. The local drifting velocity of the particle was found to be a function of the 
turbulence properties of the surrounding fluid and the fractional particle concentration gradient 
in the transverse direction. The local mean particle drifting velocity can be superimposed on to the 
particle fluctuating velocity to give a total picture of the dominating particle velocities found in 
regions characterized by large amplitude fluid fluctuations. 

A subsequent paper (Lee 1987) will show that the theory (together with other new results on 
the concentration effects on particle drag and lift and fluid turbulence properties) can help to 
explain the phenomena measured by Lee & Durst (1982). 

NOMENCLATURE 

36/..if 
a = (2pp + p f ) d  2 

b = 3pr 
(2pp + pf) 

[ is 
c = _4(2pp + pr)'l \ - ' -~ , /  

ao 
El(n) 

A 
A 
k 

k'  
n 

/'/e 

t 

t* 

T = 2n/09 

af, 

g. 

A constant, as defined in [5a] 

A constant, as defined in [5b] 

A constant,  as defined in [5c] 

= Particle diameter 
= Lagrangian energy spectrum as a function of frequency 
= A function of 09, as defined in [20a] 
ffi A function of 09, as defined in [20hi 
= A function, as defined in [1 1] 
= A constant of proportionality, as defined in [27] 
= 09/2n, Frequency 
= 09=/2n, Frequency associated with the average energy across the 

spectrum 
= Inner radius of the pipe 
= Cutoff radius 
= Time 
= Characteristic diffusion time 
-- Time period 
--Sinusoidal fluid motion, represented as a Fourier integral in the 

axial direction 
= Sinusoidal particle motion, represented as a Fourier integral in the 

axial direction 
= Time-mean average of tT~ 
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Vf~-- 
vf= 
Vp = 

vf = t~fs + ~fd = 
e~= 

~ = 

vp = ~ + ~N = 

~ =  

X 

y =  

! ~ =  

(, f  -m- 

rl = 

= 

~ f  

Y f  = l a f / p f  = 

p f  = 

pp = 
= 2 • n  = 

(.,0 c -~- 

Fluid velocity 
Magnitude of fluid velocity 
Particle velocity 
Fluid velocity in the transverse direction 
Sinusoidal fluid motion, represented as a transverse Fourier integral 
in the transverse direction 
Additional local transverse fluid motion due to fractional variation 
in the particle concentration 
Time-mean average of t~fd, the apparent fluid drifting velocity in the 
transverse direction 
Particle velocity in the transverse direction 
Sinusoidal particle motion, represented as a Fourier integral in the 
transverse direction 
Additional local transverse particle drifting or diffusion motion due 
to fractional variation in the particle concentration 
Axial coordinate 
Transverse coordinate 
Time-mean particle volumetric concentration 
Phase angle, as defined in [19] 
Fluid turbulent diffusivity 
Particle turbulent diffusivity 
Ratio of particle oscillation amplitude/surrounding eddy oscillation, 
as defined in [18] 
Value of r/associated with t~ 
Complex Fourier integral amplitude component of fluid oscillation, 
as defined in [7] 
Complex Fourier integral amplitude component of fluid oscillation, 
as defined in [7] 
Intrinsic absolute fluid viscosity 
Intrinsic kinematic fluid viscosity 
Intrinsic fluid density 
Intrinsic particle density 
Frequency 
Cutoff frequency 
Frequency associated with the average energy across the spectrum 
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